
Vision, our intuition tells us, is about recognizing objects 
and colours. However, with a little more insight we realize 
that understanding spatial relationships is also crucial. In 
particular, the displacement of objects with time carries 
vital information. How difficult can it be to see an object 
move? The principle seems simple: an object is first in 
one location, and then a moment later it is in another. In 
reality, motion detection is fraught with difficulties, such 
as how to distinguish between image noise and actual 
motion, and how to deal with several movements in the 
same part of an image. But at the core of motion process-
ing is the aperture problem, a computational obstacle that 
is as abstruse as it is inconvenient (FIG. 1a). The aperture 
problem refers to the visual system’s inability to sense 
the overall velocity of an object by sampling the velocity 
at just one location on the object’s surface. Unless this 
problem is overcome, the velocity of objects cannot be 
computed. Therefore, a great deal of visual processing is 
dedicated to a problem that most of us have never heard 
of. This Review will cover the basic stages of velocity 
computation in the primate visual system, with empha-
sis on the mechanisms that create and solve the aperture 
problem. We aim to show how a combined theoretical 
and experimental approach can provide unique insights 
into computational neural systems.

Anatomy of the visual motion pathway
A number of recent reviews have discussed in detail 
the anatomy of the subcortical and cortical areas that 
are involved in motion processing1–6. Here, we relate  

computational models of motion processing to two cor-
tical areas: area V1 (the primary visual cortex) and area 
MT (the middle temporal area). Both V1 (ReF. 7) and MT8 
contain neurons that respond strongly to motion in a 
particular direction and weakly or not at all to motion in 
the opposite direction. The same neurons also typically 
respond best to a particular speed. Because direction 
and speed together define a single vector called velocity 
(speed is the magnitude), V1 and MT neurons are said 
to be velocity-tuned.

In V1, velocity-tuned neurons are concentrated in 
upper layer 4 (ReF. 9.) There is an atypical, direct pro-
jection from this layer to MT10. Most MT neurons are 
velocity-tuned, compared with roughly a quarter in V1. 
Neurons in V1 project indirectly to MT through area V2 
(the secondary visual cortex), but it is not clear whether 
this pathway is involved in velocity computation11.

Pattern velocities and local velocities
Imagine a moving object with a considerable amount 
of structure — that is, not a bare sphere, but something 
similar to a branch or a hand. For simplicity we will 
discuss only rigid, non-rotating objects. The motion 
of the object is characterized at any instant by Vx and 
Vy, the horizontal and vertical components of velocity. 
The velocity vector’s direction is arctan(Vy/Vx ), and its 
magnitude (speed) is √(Vx

2 + Vy
2). When referring to the 

velocity of the whole object we talk about the ‘pattern’, 
‘object’ or ‘global’ velocity. However, we can also refer to 
the velocity measured at specific locations on the object: 
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Abstract | Computational neuroscience combines theory and experiment to shed light on 
the principles and mechanisms of neural computation. This approach has been highly 
fruitful in the ongoing effort to understand velocity computation by the primate visual 
system. This Review describes the success of spatiotemporal-energy models in representing 
local-velocity detection. It shows why local-velocity measurements tend to differ from the 
velocity of the object as a whole. Certain cells in the middle temporal area are thought to 
solve this problem by combining local-velocity estimates to compute the overall pattern 
velocity. The Review discusses different models for how this might occur and experiments 
that test these models. Although no model is yet firmly established, evidence suggests that 
computing pattern velocity from local-velocity estimates involves simple operations in the 
spatiotemporal frequency domain.
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this is termed ‘local’, ‘normal’ or ‘component’ velocity. 
This distinction might seem odd — is the velocity not 
the same everywhere on the object?

The answer depends on whether we are talking about 
the true velocity of the sampled location or the velocity 
that the visual system detects (the apparent velocity).  
As we shall see, local-velocity measurements are not 
generally the same as the true object velocity. This dis-
crepancy between local and global velocities is the aper-
ture problem. What causes the discrepancy? The answer 
is rather complex, and it requires an understanding of 
both experimental results and theoretical concepts. The 
goal of this Review is to convey this understanding, 
beginning with the conventional view of the aperture 
problem.

The aperture problem
FIGURe 1a shows a rectangle that is moving to the right, 
seen through an aperture placed over its upper-right 
edge. Viewed through the aperture, this edge seems to 
be moving up and to the right, even though the rec-
tangle is moving directly right. Thus, the local-velocity 
sample is different from the object velocity. This is 
because the rightward vector representing the object 
velocity is separable into one vector that is parallel to 
the edge and one vector that is normal (perpendicular) 
to it (FIG. 1b). The parallel vector is invisible because 
there is no contrast (no intensity gradient) along the 
length of an edge; thus, one sees only the normal com-
ponent. For this reason edges always seem to move 
perpendicularly to themselves, no matter which way 
they are really going.

This conventional depiction of the aperture prob-
lem is intuitive but incomplete. In reality the aperture 

problem takes different forms, depending on the model 
of velocity computation in question. In the following 
section we describe three approaches to local-velocity 
estimation and show how the aperture problem arises 
in each case.

Models of local-velocity detection
Most pattern-velocity models are based on two stages: 
one in which local velocities are estimated, and another 
in which local velocities are combined to compute the 
pattern velocity. Here we explain the basic operation of 
three models of local-velocity estimation. We first con-
sider strictly theoretical ideas; in a later section we will 
discuss possible physiological counterparts.

Reichardt detectors. Arguably the most intuitive motion-
detection model consists of two luminance (not motion) 
sensors that are offset in space12. The outputs of the 
two sensors are combined and multiplied to produce 
a response that is large when the sensors are triggered 
sequentially with a particular delay. The direction that 
the overall detector is tuned for depends on the align-
ment of the sensors in space, and the speed tuning is 
determined by the delay.

let us imagine a moving object. If the object’s direc-
tion happens to be aligned with the two sensors of the 
Reichardt model, then the leading edge of the object will 
trigger the sensors with a delay between the triggering 
of the first and the second sensor that depends only 
on the object’s speed. However, if the object is moving 
in a different direction, the delay between the trigger-
ing of the two sensors will also depend on the object’s 
shape (FIG. 1c). Thus, as the only thing that is sensed by a 
Reichardt detector is the delay between the activation of 
its two sensors, Reichardt detectors cannot measure the 
direction or speed of an object. This is one manifestation 
of the aperture problem.

Gradient models. Gradient models were proposed as a 
fundamental basis for motion detection13,14. let I(x,y,t) 
denote the measured image intensity at location x,y and 
time t. let Ix , Iy and It be the partial derivatives of I with 
respect to x, y and t, respectively, and let Vx and Vy be 
the x and y components of the object’s velocity. It can  
be shown13 that IxVx + IyVy = –It, which we can rewrite as 
(Ix,Iy).(Vx,Vy) = –It. The intensity derivatives are meas-
urable, but Vx and Vy are unknown. As there are two 
unknowns and a single equation, we cannot determine 
their separate values from just one sample. However, we 
can compute the component of the object’s velocity in 
the direction of the gradient (Ix ,Iy) using the following 
equation 
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Thus, one cannot know object velocity from a single, 
local sample. Instead, we obtain an estimate of velocity 
in the direction of the gradient that is being sampled. 
This is the aperture problem in terms of the gradient 
model.

Figure 1 | The aperture problem. a,b | Even though the rectangle is moving directly to 
the right, it seems to be moving up and to the right when it is sampled through an 
aperture as shown (a). This is because object velocity can be decomposed into two 
orthogonal vectors (b), one perpendicular to the visible edge of the rectangle and one 
parallel to the edge. The parallel vector is invisible because one cannot detect the 
movement of an edge along its own length; thus, all we detect is the perpendicular 
vector. c | The aperture problem, as incurred with a Reichardt detector. Each unfilled 
circle represents a detector that senses image contrast at a specific location and a 
specific time. The red and blue shapes represent moving objects. Motion is assumed to 
occur along the axis of the two detectors if they are activated in sequence with the 
appropriate timing. However, these conditions could be met for objects moving even 
orthogonally to the detector axis (as illustrated by the red object), depending on their 
speed and shape. Therefore a Reichardt detector does not signal object velocity.
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()2 ()2+Spatiotemporal frequency
A three-dimensional frequency 
vector (wx,wy,wt) that specifies 
spatial frequencies wx and wy 
and temporal frequency wt. 
The physical counterpart is a 
moving sinusoidal grating.

Band-pass filters
A type of linear filter that 
blocks low and high 
frequencies while allowing a 
certain range of intermediate 
frequencies to pass through.

Simple cells
V1 neurons with essentially 
linear properties. They act  
as linear space–time filters that 
perform the first and most 
basic step of motion detection. 
Subsequent stages (performed 
by complex cells and MT cells) 
elaborate on the outputs of 
simple cells.

Rectification
A sinusoidal wave (whatever its 
dimensions) oscillates 
symmetrically about a value of 
zero. If we take the absolute 
value of the negative parts, we 
obtain a full-wave rectified 
signal. If we set the negative 
parts to zero, we obtain a 
half-wave rectified signal.

Quadrature pair
A pair of sinusoidal functions of 
the same dimension and 
frequency but with phases that 
differ by 90°. Notably, sine and 
cosine functions have a 
quadrature relationship to 
each other.

Spatiotemporal-energy models. spatiotemporal energy 
(sTe) models15–19 (FIG. 2) can account for a wide variety  
of data and are based on physiologically plausible math-
ematical operations. These models have three basic 
steps, known as linear filtering, motion energy and 
opponent energy. These steps are described below, first 
theoretically and then later in terms of cortical mecha-
nisms. Understanding these models requires a basic  
understanding of frequency analysis, as outlined in 
BOX 1.

In the linear filtering step, sTe models detect motion 
using filters that are oriented in space and time. To 
understand this, we can plot the spatial coordinates x 
and y, and the time coordinate t, of a particle as it moves 
along a trajectory (FIG. 2a). This shows that motion can be 
considered to be an orientation in space–time. It makes 
sense, therefore, that motion might be detected with a 
filter that is oriented in space–time (FIG. 2b).

As described in BOX 1, both images and filters can be 
described in the frequency domain. In the visual system, 
spatiotemporal-frequency filters are in fact band-pass filters, 
each responding to a narrow range of spatiotemporal 
frequencies. When an image passes through a filter, the 
filter’s response depends on how much the spectrum of 
the image — its energy or intensity distribution in fre-
quency space — and the spectrum of the filter overlap. 
V1 simple cells resemble filters with a small, spherical 
spectrum, whereas the spectrum of a moving object is a 
plane, the orientation of which specifies the object veloc-
ity. The filter responds best to planes that pass through 
the centre of its spectrum, but as planes with various 
orientations can do this (BOX 1 figure, part c), the filter 
(the V1 neuron) cannot determine the object velocity. 
This is how the aperture problem is manifest in a system 
in which linear filters are used as the first step.

The role of the second step in the sTe model, 
a motion-energy step, is mainly to remove phase-
dependence from the output. As described in BOX 1, the 
frequency components of an image can be depicted as 
moving sinusoidal gratings. The output of a band-pass 
filter that is convolving a moving sinusoidal grating is an 
oscillating scalar function of time. Because the output 
oscillates whereas the grating’s motion is constant, the 
instantaneous output of the filter is not a useful indica-
tor of motion. More useful information can be obtained 
from the amplitude of the filter’s oscillating output. one 
way to compute this amplitude is to rectify the oscillating 
wave and then integrate over time. If this computation 
takes place in a neuron, rectification will occur auto-
matically, because firing rates cannot be negative. For 
integration one could simply pass the rectified output 
through a low-pass temporal filter. But temporal integra-
tion is not strictly necessary. In particular, by squaring 
and then summing the outputs of two Gabor filters that 
are phase-shifted by 90° (a quadrature pair, see FIG. 2c), 
one produces a quantity that does not vary with time18.

The third step of sTe models, called opponent energy, 
achieves noise reduction. Because motion signals fun-
damentally consist of space–time correlations of image 
contrast, random variations in image luminance tend to 
produce noisy motion signals. The visual system also has 

Figure 2 | summary of the spatiotemporal energy 
(sTe) model. a | A moving dot traces out a path in 
space–time. x and y correspond to horizontal and vertical 
axes, respectively, and t is time. The projection (shadow, 
shown in green) of the path on the x–y plane specifies an 
angle with the x axis; this angle is the direction of motion. 
The rate of ascent (slope, shown in red) in the t dimension 
corresponds to the speed of motion. b | Ignoring y, the 
movement of the dot (dashed red line) is shown by plotting 
x against t. The filled and unfilled ovals illustrate the 
orientation of the positive (unfilled) and negative (filled) 
lobes of a filter. If the filter is oriented in the same way as 
the dot’s space–time path (top panel) it could be activated 
by this motion. A dot moving in the opposite direction 
(bottom panel) would always contact both positive and 
negative lobes of the filter and therefore could never 
produce a strong response. c | The complete model. Motion 
is first extracted with linear filters that are oriented in 
space and time. These are thought to correspond to the 
receptive fields of V1 (primary visual cortex) simple cells. 
For each direction to be detected (left and right in this 
example), two filters that are 90° out of phase are paired (a 
quadrature pair). Squaring the output of each of these 
filters and then summing them produces a phase-invariant 
response called the motion energy. This step is thought to 
take place in V1 complex cells. Finally, two 
opposite-direction energy detectors are opposed, either 
by subtraction as assumed here or by a nonlinear 
mechanism such as division in MT (middle temporal) cells.
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Gabor function
A sinusoidal function multiplied 
by a Gaussian function. The 
sinusoid is said to be in a 
Gaussian ‘envelope’.

its own internal noise. Therefore, an opponent stage is 
introduced in which the output of each motion-energy 
detector that is tuned for a given direction is subtracted 
from that of a detector that is tuned for the opposite 
direction (FIG. 2c). This relies on the principle that noise, 
because it tends to be omnidirectional, should activate 
oppositely-tuned detectors to similar extents. Thus, 
noise does not produce a net response.

Neurophysiological support for the STE model
The Reichardt, gradient and sTe models are not really 
exclusive ideas; in fact, they are mathematically equiva-
lent at certain stages (BOX 2). However, the sTe model is 
detailed and its steps map conveniently onto the known 

stages of neural motion processing. Therefore, in the fol-
lowing we discuss these neural stages and their relation-
ship to elements of the sTe model. We emphasize first 
that early formulations of the sTe model were not meant 
to precisely represent neuronal properties but, rather, 
were intended to suggest basic types of algorithm that 
might be used in the visual system. one should not infer, 
for example, that the first step must be strictly linear, or 
that the opponent step is specifically subtractive. Nor 
should it be assumed that each step corresponds pre-
cisely to a particular cortical population. Nevertheless, 
there are important similarities between certain cortical 
neurons and the functions that are expressed by the sTe 
model, along with some notable differences.

Box 1 | Basic introduction to frequency analysis

Frequency analysis refers to the description of images in terms of their spectra and the description of neural 
transformations in terms of filter operations.

The spectrum of an image is computed with a Fourier transform, which sees the image as the sum of moving sinusoidal 
waves with different frequencies, amplitudes and phases. Each wave is called a frequency component and is 
three-dimensional (the three dimensions being w

x
, w

y
and w

t
) (see figure, part a). The amplitude spectrum depicts the 

amplitude of the waves as a function of their frequency, and its square is called the power spectrum. Both types of spectrum 
describe an image not in familiar space and time coordinates, but in the frequency, or Fourier, domain. For an image with 
spatial dimensions x and y and temporal dimension t, each frequency component can be depicted as a moving sinusoidal 
grating with a particular spatial frequency, direction and speed. The relationship between a grating’s frequency vector and 
its velocity is given by: direction = arctan(w

y
/ w

x
) and speed = w

t
 / √(w

x
2 + w

y
2).

A linear filter convolves its input with a specific kernel. Certain kernels give rise to band-pass filters, for which the 
amplitude of the output depends on the image intensity within a narrow range of frequencies that are characteristic of  
the filter. The centre of this range is called the centre frequency. Most simple cells behave like band-pass filters, with kernels 
that resemble Gabor functions. Part b of the figure shows a two-dimensional Gabor kernel. In the space–time domain, a 
Gabor function is a sinusoidal wave inside a Gaussian envelope. To describe a Gabor kernel in frequency space, we take the 
Fourier transform of the kernel to obtain the transfer function. The result is a fuzzy blob in frequency space, the density of 
which decreases with distance from the centre (see figure, part c). The location of the centre, (w

x
,w

y
,w

t
)C, is the Gabor filter’s 

centre frequency, which corresponds uniquely to a particular velocity according to the equations above.
Both the image and the kernel of a filter can thus be described in the frequency domain (that is, in terms of their spectra). 

For the image, the spectrum reflects image intensity at various frequencies. For the kernel, the spectrum reflects the weight 
of the kernel at various frequencies. The response of a filter to an image can be predicted by looking at how much the 
image spectrum and the transfer function overlap. More formally, the transform of the input multiplied point-wise by  
the transform of the kernel equals the transform of the convolution (the filter’s output).

The spectrum of a rigid moving object is zero-valued except on a single plane in frequency space, the orientation of 
which corresponds to the object’s velocity. Thus, a simple cell should respond well when the planar spectrum of the image 
passes through or near the centre of the blob that is the transfer function of the cell’s Gabor kernel. (Because a complex cell 
is built from simple-cell inputs, its response region is determined in the same way.) However, any number of planes with 
different orientations can do this (see figure, part c); thus, a simple cell cannot sense the velocity of a moving object, it can 
only exclude object velocities for which the planar spectrum does not pass through its transfer function. This is a formal 
statement of the aperture problem in the context of a linear system, and it is important to realize that it has nothing to do 
with a spatial aperture.
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Least-squares sampling
Noisy measurements often 
have a basic trend, such as a 
mean or a linear slope. If the 
measurements are normally 
distributed, then the 
maximum-likelihood estimate 
of the underlying trend is 
obtained by minimizing the 
sum of squared differences 
between the samples and the 
estimated trend. This is 
least-squares sampling.

Kernel
A weighting function, 
characteristic of a particular 
filter, that is used to convolve 
input to the system.

Response saturation
The levelling off of a neuron’s 
response (at some maximum 
value) as stimulus intensity 
increases.

Gain normalization
In a population of neurons  
that are tuned for a specific 
parameter and that share 
lateral, inhibitory connections, 
gain normalization removes  
the nonspecific effect of the 
overall intensity of the 
stimulus. This allows each 
neuron’s firing rate to reflect 
the strength of the image at 
that neuron’s preferred  
(tuned) value.

Recurrent inhibition
Inhibition that comes from 
lateral connections that the 
inhibited cells make with 
neurons in the same cortical 
area.

Complex cells
V1 neurons that are thought to 
represent a stage that lies one 
level above simple cells in the 
motion-processing stream. 
Complex cells probably 
combine input from simple 
cells with similar frequencies 
but different phase tuning. 
They tend to be 
phase-insensitive.

Spike-triggered correlation 
and covariance
Neurons are sometimes 
responsive to specific 
combinations of stimulus 
properties (for example, 
luminance at different 
locations). As a result, these 
combinations tend to occur 
just before a spike. 
Spike-triggered correlation and 
covariance measure the 
average pattern of correlation 
that occurs in the moments 
preceding a spike.

The linear filtering step of the sTe model strongly 
resembles the function of V1 simple cells. Following ini-
tial qualitative observations, various impulse-response7,20 
and linear-systems21–26 techniques have supported the 
idea that the responses of simple cells are to a large 
extent linear in both space and time. Reverse-correlation 
studies have shown that the receptive fields of simple 
cells contain oriented, adjacent on and off regions, as 
predicted by the model. In fact, simple cells’ receptive 
fields resemble Gabor kernels (BOX 1), which are used in 
some sTe models for the linear filtration stage.

simple-cell responses are not entirely linear, how-
ever. As firing rates cannot be negative, they are recti-
fied in some way, and this is a nonlinear effect. More 
non linearity results from response saturation and prob-
ably from gain normalization through recurrent inhibition27. 
In fact, linear and nonlinear mechanisms contribute 
approximately equally to direction selectivity in simple 
cells22. Therefore, although the basic tuning of simple cells  
is thought to derive from oriented, linear spatio-
temporal filters, it should not be inferred that simple-
cell responses are strictly linear transformations of the 
luminance input.

substantial evidence links the motion-energy step of 
sTe models to V1 complex cells. First, complex-cell but 
not simple-cell responses are largely phase-insensitive28. 
second, a reverse-correlation technique was used to com-
pute responses to single bars and two-bar interactions in 
cat complex cells29. The study also derived predictions 
from the sTe model for the same stimuli, and found that 
the motion-energy output of the model corresponded 
closely to the responses of the complex cells. Finally, 
spike-triggered correlation30 and covariance31 were used to 
show that complex cells pool inputs from one or more 
quadrature pairs of linear kernels. These results suggest 
that, like the energy step of the sTe model, complex 
cells pool input from simple cells with similar frequency  
tuning but phase-shifted receptive fields.

The opponent-energy stage predicts that there should 
be neurons that are inhibited by non-preferred directions. 
It was shown that MT neurons responding to their pre-
ferred direction were strongly (60%) suppressed by locally 
paired dots moving in the opposite direction32. The same 
tests in V1 neurons showed much weaker (20%) suppres-
sion. These findings suggest that the opponent stage could 
correspond to MT neurons, but they do not specifically  
imply that opponency occurs between motion-energy 

detectors. Also, the observed suppression in MT neu-
rons was essentially divisive rather than subtractive. 
But the original sTe model’s assumption of subtractive 
opponency was not critical: what matters is that an oppo-
nent stage is needed for noise suppression and that this  
opponency has been observed in MT neurons.

Solving the aperture problem: concepts
In this section we discuss several theories about how the 
visual system deals with the ambiguity of local-velocity 
estimates. In some cases the approach is to pool local 
velocities in some fashion to derive the global (object) 
velocity. Another idea, called feature tracking, holds that 
by limiting local samples to specific features the ambigu-
ity can be avoided altogether. The ideas in this section 
are strictly theoretical; in a later section we evaluate the 
evidence for and against each of them.

Vector summation. perhaps the simplest way to estimate 
object velocity from local samples is with a vector aver-
age (VA), or vector sum. In the same way that the mean of 
multiple samples of a random variable can represent the 
variable’s central tendency, one might expect the aver-
age of many local-velocity samples to reflect the overall 
velocity of an object. However, this does not really fol-
low, because local velocities do not form a probability 
distribution but, rather, a deterministic distribution of 
speed versus direction.

Although the direction and speed of the VA tend 
to be roughly correlated with object direction and 
speed, the VA is in general a poor estimator of object 
velocity. For example, the VA speed is almost always 
less than the object speed. And although the VA speed 
scales with the object speed, it tends to vary from 
one object to the next — even if their speeds are the 
same — depending on the objects’ shape (FIG. 3). Also, 
there is no a priori reason for the directions of local-
velocity samples to distribute symmetrically on either 
side of the object direction; thus, the VA is a biased 
estimator of object direction. Finally, the VA assumes 
that there is an input that consists of two-dimensional 
velocity vectors. But single-neuron firing rates are one- 
dimensional. Although one can imagine schemes in 
which multiple neurons are used to estimate the veloc-
ity vector at each location, followed by a VA of the local 
results, the simplicity of the VA approach — its only 
advantage — would be lost.

 Box 2 | Relationship of spatiotemporal energy (STE) models to gradient and Reichardt models

Intensity gradients tend to be highly localized; that is, one tends to see ‘edges’, rather than large patches with a steady 
change in luminance. Therefore, gradient samples must take place on a very small scale. As a result they tend to be noisy, 
or uncertain. This noise can be minimized with a least-squares sampling approach that emphasizes regions with the 
steepest gradient, where uncertainty is at a minimum. Under such conditions the gradient model is formally equivalent 
to the STE model at the motion-energy step16.

The basic idea of the Reichardt model was extended to include spatial filters (as a first step), subtractive opponency and 
other modifications17. This produces a model that is formally equivalent to STE models at the opponent-energy step.

Note that if different models produce the same output at certain stages, it need not follow that the models are 
equivalent. Nevertheless, the sequence of individual transformations that leads to that output can vary. Indeed, it is the 
nature of this sequence that interests us, because the different transformations can have correlates at different 
anatomical stages of neural processing.
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Vector sum
every two-dimensional velocity 
has two components: the 
horizontal velocity, Vx, and  
the vertical velocity, V y. Given  
a set of velocity vectors, the 
vector sum itself has two 
components: one the sum  
of the Vx, the other the sum of  
the V y. The vector average  
is the vector sum divided by 
the number of vectors.

Surround inhibition
Modulation of a visual neuron 
that results from the presence 
of a stimulus in a defined 
‘surround’ region outside the 
classical receptive field of a 
visual neuron; as the name 
implies, the effect is usually but 
not always inhibitory.

Static nonlinearities
Static nonlinearities occur 
when a (temporally) linear 
filtering operation is performed 
and then the output (the firing 
rate) is transformed with some 
nonlinear mechanism, such as 
rectification or saturation. 
Static nonlinearities tend to 
scale the output but do not 
affect the overall selectivity of 
the mechanism.

Maximum-likelihood 
estimation
A process in which the 
probability of each of a sample 
of multiple random variables 
(such as neural firing rates for a 
certain stimulus) is inspected 
and then an overall estimate of 
the probability (termed the 
likelihood) of this set of 
observations is taken. Thus, 
one method of stimulus 
discrimination is to choose the 
stimulus for which the 
likelihood estimate is greatest.

IOC solutions. Another approach to local-velocity detec-
tion is based on the intersection of constraints (IoC) 
principle. This principle recognizes that, for a given 
object velocity, the speed of every local sample is exactly 
determined by its direction. The relationship is 

Sl = Socos(θl – θo)  (2) 

where S and θ are speed and direction, and the subscripts 
l and o indicate local and object properties. The local 
properties are measured, whereas the two object prop-
erties are unknown; thus, at least two equations (two 
samples) are required. This is the trigonometric expres-
sion of the IoC principle. The geometric expression is 
described in FIG. 4. 

A third expression of the IoC principle involves 
frequency space. essentially, the spectrum of a rigid, 
non-rotating moving object is zero everywhere except 
on a single plane, the orientation of which corresponds 
to the object velocity. As the orientation of a plane has 
two slope components and thus two unknowns, the 
frequency-space expression of the IoC, like the trigono-
metric and geometric expressions, in principle requires 
two (noise-free) local-velocity samples to obtain the 
object velocity.

The frequency-space version of the IoC principle is 
especially convenient because, unlike the trigonometric 
and geometric expressions (and the VA), the input is 
assumed to be a scalar that represents intensity some-
where in three-dimensional frequency space, rather than 
a velocity vector. As V1 neurons are not really velocity-
tuned but rather are tuned for a three-dimensional 
frequency (their centre frequency), it is easy to see how 
the distribution of V1 responses over three-dimensional 
frequency space could in a simple fashion represent a 
plane, the orientation of which conveys the velocity of 
the object.

simoncelli and Heeger developed a model along 
these lines (referred to here as the s and H model)33,34. 
It begins with linear simple cells that act as oriented 
space–time filters (FIG. 5). These cells’ responses are rec-
tified and gain-normalized, and then they are spatially 
pooled by a complex cell to remove phase dependence. 
This part of the model is essentially an sTe model. Next 

an MT cell, specifically a pattern-direction-selective 
(pDs) cell (see below), sums the inputs of complex 
cells that have centre frequencies that lie on a common 
plane in frequency space. The orientation of a pDs cell’s 
pooling plane corresponds to its preferred velocity. The 
model’s final stage rectifies and gain-normalizes the 
pDs-cell outputs.

The s and H model was recently updated to include 
a specific kind of normalization: tuned normalization, 
which conveys a behaviour that is similar to surround 
inhibition27. The current model can therefore be under-
stood as having a dynamic linear backbone — the V1 
and MT selectivities for certain frequency ranges — 
with associated static nonlinearities. However, the IoC 
calculation is widely understood to be fundamentally 
nonlinear. This does not mean that the s and H model 
is not an IoC computation. The s and H model stops 
short of specifying the object velocity; instead it predicts 
a distribution of activity across pDs cells with differ-
ent preferred velocities. Ultimately, the conversion of 
image contrast to a Vx , Vy coordinate pair has to be 
nonlinear, possibly a maximum-likelihood estimation over 
the MT population. The trigonometric and geometric 
expressions of the IoC give the illusion of obviating this 
problem because their inputs are already in the velocity 
domain.

Feature tracking. The third basic approach to pattern-
velocity estimation involves feature tracking. The term 
‘feature tracking’ is somewhat vague, but we will define 
it here as any algorithm that does not suffer the aperture 

Figure 4 | A geometric expression of the intersection 
of constraints (ioc) principle. The two-dimensional 
space that is shown is velocity space, where V

x
 and V

y
 

signify the horizontal and vertical components of velocity, 
respectively. Every local sample (black arrows) from a rigid 
moving object must terminate on the same circle in this 
space. The vector that bisects the circle (green arrow) 
corresponds to the object velocity. The two black lines 
show a more common depiction of the IOC: any local 
velocity has a perpendicular component that extends from 
its tip and crosses the tip of the object vector.

Figure 3 | A vector average (or sum) of local velocities 
can grossly misrepresent speed. The two circles 
represent objects moving slowly (left-hand circle) and 
quickly (right-hand circle). The black arrows symbolize two 
local-velocity samples. Even though the right-hand object 
is moving faster, the vector average for the right-hand 
object (represented by the green arrow) is actually smaller.
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Endstopping
A process in which neurons 
respond well to small spots but 
poorly to long contours that go 
beyond their receptive field. 
endstopped neurons were first 
defined by Hubel and Wiesel 
as hypercomplex cells. The 
idea is that the ends of  
the contour tend to stop the 
response.

Spectral power
Taking the Fourier transform of 
a function gives its amplitude 
and its phase as a function of 
its frequency. The amplitude 
portion is called the amplitude 
spectrum, and the square of 
this is the power spectrum. The 
area under the power 
spectrum over any specific 
range of frequencies is called 
the spectral power in that 
frequency band.

problem. The idea is that the brain locates something — a 
feature — and tracks it over space and time. This feature 
could be, for example, a bright spot or a T-junction.

Feature tracking is deceptively intuitive. When we see 
a grating moving behind an aperture, we cannot detect 
in which direction the grating is really moving (FIG. 1a). 
However, when a dot or a corner moves through the aper-
ture, its two-dimensional velocity is unambiguous. In this 
context, the notion of feature tracking seems clear. But 
when it comes to postulating that individual neurons are 
feature trackers, we have to think of the problem in terms 
of these neurons’ response properties. For example, a V1 
simple or complex cell cannot signal where a dot really is: 
it can only signal that the dot is in its receptive field and, 
perhaps, a certain distance from the centre. Therefore, a 
V1 cell cannot by itself track a feature.

Feature-tracking mechanisms have been proposed in 
terms of non-Fourier motion detection35. Rather than 
delve into this rather complex theory, we use a model 
developed by Wilson and colleagues to illustrate it36. The 
model begins by squaring the spatial image to produce 
distortion products, which are then passed through a set 
of spatiotemporal filters, as in the sTe model. But distor-
tion products, unlike the raw image, do not have a local 
velocity distribution: instead, all velocity samples match 
the object velocity. Therefore, the aperture problem is 
obviated by stripping the input of ambiguous velocity 
signals.

A different idea involves a process termed endstopping  
in V1 (ReFS 37–39). endstopping tends to suppress 
responses to contours and favour responses to features 
such as dots. one might thus expect endstopping to 
disambiguate motion signals. However, the motion 
that is detected by endstopped cells is no less ambigu-
ous than it was in the first place, and so the cell still 
needs a way to sense the feature’s velocity. The Wilson 
et al. model described above also has a mechanism for 
isolating features: a nonlinear transformation of the 
spatial image (although it is different from squaring, 
endstopping is also a nonlinear spatial transformation). 
The transformation that is used in the Wilson et al. 
model also limits these features to a specific velocity, 
however: that of the object. on the other hand, end-
stopping only isolates features, it does not restrict their 
velocity. Thus, although endstopping tends to remove 
one-dimensional signals (contours) from the input, 
it does not in itself provide a mechanism for tracking 
two-dimensional signals.

endstopping could nevertheless still have a useful 
disambiguating effect. The difference between mov-
ing contours and moving dots is in their power spectra.  
In frequency space, a moving contour has energy 
that is distributed near a line that passes through 
the origin. A terminator has a point-like quality and 
therefore has energy that is spread out over a plane. 
so, as endstopping suppresses responses to contours 
and favours responses to dots, this shapes the input to 
MT and spreads it more evenly over a frequency plane. 
If MT neurons as a population are trying to find the  
orientation of the plane, this spreading effect should 
improve their accuracy.

Solving the aperture problem: evidence
Vector summation. We have already discussed the theo-
retical drawbacks of pooling local-velocity samples with 
a VA. Here we discuss a limited body of experimental 
evidence that concerns this mechanism. In short, we 
know of no substantial evidence that suggests that local 
velocities are combined with a VA in the visual system. 

Figure 5 | The simoncelli–Heeger (s and H) model. In 
all three parts of the figure, the axes of the graph are 
horizontal frequency (w

x
), vertical frequency (w

y
) and 

temporal frequency (w
t
); the origin is zero. Thus, each panel 

depicts spatiotemporal frequency space. In each panel, the 
blobs depict the central region of a kernel that 
characterizes the image transformation that is effected by 
a V1 (primary visual cortex) simple or complex cell. The 
kernel can be thought of as the neuron’s space–time 
receptive field, and its frequency-space representation 
(spectrum), shown here, is the transfer function. a | The 
transfer function of a Gabor kernel that is commonly used 
to model V1 receptive fields (the S and H model uses the 
third derivative of a Gaussian function, which is very 
similar). For the purposes of the model, the V1 cell is a com-
ponent-direction-selective (CDS) cell that serves as input 
to pattern-direction-selective (PDS) cells in the middle 
temporal area. b | A PDS cell is created by summing the 
output of CDS cells (as in part a) with spectra centred on a 
common plane. c | Frequency-space depiction of an ‘inner 
tube’ integration region for PDS cells. The inner tube is a 
variation of the S and H model that accommodates 
evidence for incompletely separable spatial-frequency  
and temporal-frequency tuning (for a given direction and 
speed). Each blob is flattened to reflect some inseparability 
that is inherited from V1 complex cells. According to this 
hypothesis, PDS cells would contribute inseparable speed 
and direction tuning but not spatial-frequency pooling 
beyond that which is accomplished in V1.
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psychophysical experiments that have been carried out 
so far do not support the idea. For example, one study 
that used plaids (visual stimuli that are created by super-
imposing two moving sinusoidal gratings) showed that 
when the individual grating speeds were adjusted such 
that the directions that would be computed using the 
IoC and VA approaches were different, subjects briefly 
perceived the plaids’ VA direction but quickly (in less 
than 100 ms) shifted to perceiving the IoC direction40. 
A physiological study in MT produced a similar result41. 
Nevertheless, there have been rather few experiments 
to directly test the VA hypothesis, so one cannot rule it 
out at this point.

The motion literature is somewhat confusing when 
it comes to VA mechanisms. In most cases the ‘vector 
average’ in question is not of the kind that we are dis-
cussing here. For example, some studies have looked at 
the VA of MT responses36,42–46. In such cases, the aver-
age in question is one of firing-rate-weighted preferred 
directions, not local-image velocity vectors. others have 
suggested the vector sum as a way of combining Fourier 
and non-Fourier motion cues36,43. Here again the aver-
age in question does not operate on image velocities 
but, rather, on the output of velocity-tuned processing 
channels.

Finally, in a study that is sometimes misinterpreted as 
supporting a VA model, it was shown that the perceived 
direction of a pair of moving lines corresponded to the 
average of their directions42. Direction is a scalar, not a 
vector, so this study did not address the possibility of 
a VA.

IOC solutions. There is evidence that MT firing rates 
represent the velocity of moving objects using the IoC 
principle. First, a psychophysical study showed that the 
perception of moving plaids depends on conditions that 
specifically affect the detection of individual grating 
velocities47. This is consistent with a two-stage model in 
which component velocities are first detected and then 
pooled to compute pattern velocity. second, plaids have 
been used to show that V1 neurons and some MT neu-
rons (collectively termed component-direction-selective 
(CDs) cells) sensed the direction of the individual grat-
ings of a plaid, whereas a subset of MT cells (pDs cells) 
responded to the overall direction of the plaid48. The 
properties of CDs and pDs cells are consistent with 
a two-stage computation. Finally, if MT is the seat of 
pattern-velocity computation, one would expect MT 
responses to correlate with our perception of velocity. 
extensive studies used noisy dot patterns to demonstrate 
that monkeys’ perception of direction or speed correlates 
in a predictable way with MT responses49–58. one would 
expect velocity percepts to be better linked to pDs- than 
CDs-cell responses, but tests of this prediction have yet 
to be published.

Note that although the above suggests a two-stage 
model, this does not by itself mean that the compu-
tation follows the IoC principle. There are two basic 
weaknesses of the plaid stimulus. First, the squaring 
(or other nonlinear transformation) of a plaid produces  
distortion products, or features. Therefore, an MT cell 

could calculate pattern velocity either with an IoC 
mechanism or by tracking features. second, to estab-
lish an IoC mechanism one needs to create a stimulus 
for which the velocity which is defined by the IoC 
principle differs from that which is defined by other 
models.

The relationship in MT between direction tuning 
and the responses to static bars has been studied59. This 
revealed a subset of neurons for which the preferred 
direction of motion was parallel to the preferred bar 
orientation. This is fully consistent with the IoC rule: 
for an object that is moving upwards (for example), any 
samples from a vertical edge are expected to have zero 
speed. It was later shown that this subset of neurons 
coincides with the previously identified pDs cells60. 
This suggests that pDs cells gather local-velocity sam-
ples according to an IoC formulation, at least for low 
speeds.

pDs cells occasionally show bimodal tuning to slow-
moving single gratings, a somewhat surprising and yet 
nevertheless firm prediction of the IoC principle61. 
Consider the trigonometric formulation of the IoC 
idea. Assuming that Sl < So then equation 2 is satisfied 
for two different values of θl. Therefore, the model 
predicts that a pDs cell will respond maximally to two 
different directions, which are symmetrically arranged 
on either side of the neuron’s preferred direction, when 
the sample speed is below the preferred pattern speed. 
There is at least some evidence to suggest that this is 
the case61.

The s and H model, which is a specific implemen-
tation of the IoC principle, is consistent with various 
experimental data, including speed tuning62, responses 
to plaids48,63, and inhibition by motion in non-preferred 
directions64. However, concordance between the predic-
tions of a model and pre-existing data does not always 
validate a model, as one tends to consider the exist-
ing data when designing the model. Certain ‘forward’ 
predictions have been tested, however. In particular, 
an elaboration of the s and H model to include certain 
static nonlinearities was examined in the context of MT 
responses to complex moving plaids27. The model’s pre-
dictions were close to the experimental results. Because 
the stimuli were distributed over a restricted range in 
frequency space, it was not possible to validate that pDs 
cells indeed integrate over a planar frequency range, as 
postulated by the core model.

other, less direct tests have argued both for62 and 
against65 certain tenets of the s and H model. one such 
tenet concerns the inseparability of temporal-frequency 
tuning and spatial-frequency tuning (TF–sF tuning, 
sometimes called ‘speed tuning’) that is inherent in the 
model. The model predicts that as long as a stimulus 
moves at a given speed, the response to it should be the 
same regardless of its spatial and temporal frequencies. 
This is because the s and H model of a pDs cell assumes 
equal-weight integration over a plane in frequency space, 
and every line in this plane (assuming that it includes 
the origin) corresponds to a single speed: therefore the 
neuron should be speed-tuned. one study62 found that 
some MT neurons are speed-tuned, at least over a certain 
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range. However, others65–67 found that speed tuning is 
no more prevalent in MT than in V1 complex cells, and 
that overall it is weak. one way to account for this, while 
recognizing that pDs cells and not complex cells have 
inseparable speed and direction tuning (as opposed to 
TF–sF tuning)27,68, is to propose that pDs cells integrate 
responses from a frequency region that is shaped like a 
flattened inner tube (FIG. 5c).

Another issue concerns the linearity of integration 
by pDs cells in frequency space. The s and H model 
assumes that each pDs cell takes a linear combination 
(sum) of activity over a frequency plane, but a recent 
study found that the integration of frequency compo-
nents might instead be nonlinear65. For each stimulus, 
two gratings with the same velocity but with different 
spatial frequencies were superimposed. The responses 
of the neurons were not well predicted by adding the 
responses to the individual gratings. It remains to be 
seen whether integration is still nonlinear when the 
two gratings have the same spatial frequency but dif-
ferent velocities. In another study, psychophysical tests 
showed that speed percepts were not well predicted from 
the linear combination of single frequencies69. Thus,  
to the extent that pDs cells integrate motion energy over 
a frequency plane, they might do so with both linear and 
nonlinear components.

The s and H model is not yet complete, in that it 
does not attempt to predict the response dynamics that 
are observed in experimental studies. This will be an 
important adjustment. studies70,71 showed that pDs cells 
initially behave like CDs cells, and then over the course 
of approximately 80 ms acquire their own pattern prop-
erty. This is consistent with psychophysical studies that 
suggested that humans initially perceive the vector-sum 
direction and then perceive the pattern direction40. The 
gain-normalization and tuned-normalization circuits of 
the current s and H model can be expected to create 
some response delay, but it is not yet clear how that delay 
would cause pDs cells to initially behave like CDs cells. 
It will be interesting to see what kinds of mechanism will 
have to be added or adjusted for the model to reproduce 
these dynamics.

Feature tracking. evidence suggests that motion process-
ing is coupled to some kind of feature-extraction mecha-
nism63,72–74. However, although there is evidence for 
feature-based segmentation63,72–74, there is comparatively 
little evidence for a feature-tracking mechanism in the 
visual cortex, because few studies have directly examined 
the issue.

Wilson et al. suggested that the mechanisms that are 
used for tracking feature motion might be in area V2 
(ReF. 36). If so, V2 neurons should sense moving plaids 
in terms of their pattern direction, not in terms of their 
component direction, because gratings contain features 
that are produced by the regions where the peaks and 
troughs of the gratings coincide. However, tests in V2 
failed to show an appreciable number of pDs cells75.

some studies have found pDs cells in V1, suggesting that 
a feature-tracking mechanism could operate there. one 
study observed pDs cells in animals under anaesthesia76,  

whereas another found that pDs behaviour occurred in 
awake but not in anaesthetized animals77. Yet another 
study did not find any pDs behaviour in V1 (ReF. 48). 
overall, the evidence for a substantive pDs mechanism 
(and thus feature-tracking) in V1 is weak.

Summary
pattern-velocity computation is a difficult and fascinat-
ing problem. Ultimately it must be solved by examin-
ing signals that correlate with an object’s velocity. 
Fundamentally these signals must be transformations 
of spatiotemporal image contrast1. The various theories 
about velocity estimation differ in terms of how the  
correlated signals are extracted.

The IoC principle is based on the understanding 
that local velocities are collectively consistent with a 
single object velocity. Coincidence is a critical condi-
tion, as the local samples have to come from the same 
object at the same time to be meaningful. Feature-
tracking approaches also rely on the superposition 
(coincidence) of frequency components: this creates 
distortion products, which can then be tracked in two 
dimensions.

Without tracking features, one is compelled to extract 
motion signals with linear mechanisms and then look at 
their correlation to derive the object velocity. Fortunately, 
velocity samples from rigid moving objects are heav-
ily correlated; in fact, for a given object, the expected 
distribution of local samples is entirely specified by just 
two parameters corresponding to the object’s direction 
and speed. The extraction of these parameters from a 
distribution of local velocities is one way of describing 
the IoC approach.

We expect several lines of experimental research 
to be important in the future. First, it will be useful to 
identify the system properties (the mechanisms and/or 
neural populations) that are responsible for the peculiar 
dynamics of pDs cells and the correlated delay in pat-
tern-motion perception. second, because MT neurons 
operate directly on V1 inputs, experimental methods 
are needed to sample sizeable V1 and MT populations 
simultaneously. The information that is yielded could 
be critical to our understanding of the transformations 
that are effected by MT. Third, there is currently no solid 
explanation for the large number of CDs cells in MT. 
How is the function of these CDs cells different from 
that of V1 CDs cells? Finally, it will be important to 
demonstrate that pDs cells signal pattern motion under 
conditions in which distortion products are not possi-
ble. short of this, we cannot rule out the possibility that 
pDs cells draw input from neurons — wherever they 
might be — that circumvent the aperture problem with  
nonlinear spatial transformations.

Theoretical and experimental studies of velocity 
computation will need to increasingly interact in the 
coming years. even what we currently know about  
the computational mechanisms of pattern velocity tends 
to be difficult to grasp. As our understanding of the 
problem deepens, mathematical models will be increas-
ingly important for making sense of experimental  
observations and suggesting new experiments.
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